Vortex-corner interactions in a cavity shear layer elucidated by time-resolved measurements of the pressure field
نویسندگان
چکیده
The flow structure and turbulence in an open cavity shear layer has been investigated experimentally at a Reynolds number of 4.0× 104, with an emphasis on interactions of the unsteady pressure field with the cavity corners. A large database of time-resolved two-dimensional PIV measurements has been used to obtain the velocity distributions and calculate the pressure by spatially integrating the material acceleration at a series of sample areas covering the entire shear layer and the flow surrounding the corners. Conditional sampling, low-pass filtering and time correlations among variables enable us to elucidate several processes, which have distinctly different frequency ranges, that dominate the shear layer interactions with the corners. Kelvin–Helmholtz shear layer eddies have the expected Strouhal number range of 0.5–3.2. Their interactions with the trailing corner introduce two sources of vorticity fluctuations above the corner. The first is caused by the expected advection of remnants of the shear layer eddies. The second source involves fluctuations in local viscous vorticity flux away from the wall caused by periodic variations in the streamwise pressure gradients. This local production peaks when the shear layer vortices are located away from the corner, creating a lingering region with peak vorticity just above the corner. The associated periodic pressure minima there are lower than any other point in the entire flow field, making the region above the corner most prone to cavitation inception. Flapping of the shear layer and boundary layer upstream of the leading corner occurs at very low Strouhal numbers of ∼0.05, affecting all the flow and turbulence quantities around both corners. Time-dependent correlations of the shear layer elevation show that the flapping starts in the boundary layer upstream of the leading corner and propagates downstream at the free stream speed. Near the trailing corner, when the shear layer elevation is low, the stagnation pressure in front of the wall, the downward jetting flow along this wall, the fraction of shear layer vorticity entrained back into the cavity, and the magnitude of the pressure minimum above the corner are higher than those measured when the shear layer is high. However, the variations in downward jetting decay rapidly with increasing distance from the trailing corner, indicating that it does not play a direct role in a feedback mechanism that sustains the flapping. There is also low correlation between the boundary/shear layer elevation and the returning flow along the upstream vertical wall, providing little evidence that this returning flow affects the flapping directly. However, the characteristic period of flapping, ∼0.6 s, is consistent with recirculation time of the fluid within the cavity away from boundaries. The high negative correlations of shear/boundary layer elevation with the streamwise pressure gradient above the leading corner introduce a plausible mechanism that
منابع مشابه
Numerical Simulation of Shock-Wave/Boundary/Layer Interactions in a Hypersonic Compression Corner Flow
Numerical results are presented for the shock-boundary layer interactions in a hypersonic flow over a sharp leading edge compression corner. In this study, a second- order Godunov type scheme based on solving a Generalized Riemann Problem (GRP) at each cell interface is used to solve thin shear layer approximation of laminar Navier-Stokes (N-S) equations. The calculated flow-field shows general...
متن کاملSimulation of Lid Driven Cavity Flow at Different Aspect Ratios Using Single Relaxation Time Lattice Boltzmann Method
Abstract Due to restrictions on the choice of relaxation time in single relaxation time (SRT) models, simulation of flows is generally limited base on this method. In this paper, the SRT lattice Boltzmann equation was used to simulate lid driven cavity flow at different Reynolds numbers (100-5000) and three aspect ratios, K=1, 1.5 and 4. The point which is vital in convergence of this scheme ...
متن کاملConnection between corner vortices and shear layer instability in flow past an ellipse
We investigate, by numerical simulation, the shear layer instability associated with the outer layer of a spiral vortex formed behind an impulsively started thin ellipse. The unstable free shear layer undergoes a secondary instability. We connect this instability with the dynamics of corner vortices adjacent to the tip of the ellipse by observing that the typical turnover time of the corner vor...
متن کاملPressure evolution in the shear layer of forming vortex rings
This study investigated the relationship between the pinch-off of axisymmetric vortex rings and the evolution of pressure in the shear layer being entrained into the vortex rings. A piston-cylinder apparatus was used to generate the vortex rings, and five cases of constant piston acceleration over distances ranging from zero (impulsive start) to eight piston diameters were investigated. It was ...
متن کاملPii: S0377-0257(01)00094-5
The flow of a polystyrene Boger fluid through axisymmetric contraction–expansions having various contraction ratios (2 ≤ β ≤ 8) and varying degrees of re-entrant corner curvatures are studied experimentally over a large range of Deborah numbers. The ideal elastic fluid is dilute, monodisperse and well characterized in both shear and transient uniaxial extension. A large enhanced pressure drop a...
متن کامل